If it's not what You are looking for type in the equation solver your own equation and let us solve it.
20=q^2
We move all terms to the left:
20-(q^2)=0
We add all the numbers together, and all the variables
-1q^2+20=0
a = -1; b = 0; c = +20;
Δ = b2-4ac
Δ = 02-4·(-1)·20
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*-1}=\frac{0-4\sqrt{5}}{-2} =-\frac{4\sqrt{5}}{-2} =-\frac{2\sqrt{5}}{-1} $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*-1}=\frac{0+4\sqrt{5}}{-2} =\frac{4\sqrt{5}}{-2} =\frac{2\sqrt{5}}{-1} $
| 6x-4(x-10)=50 | | (7/3x+1)-(18x/3x+1)=-6 | | 35.2x-369600=27.2Y-316800 | | (7x+6)/8+(2x-8)/3=-5 | | F(x)=3x-10F(x)=20 | | b/11-8b/11=42/11 | | 1/9(4t-7)=10/9t-t+7/18 | | (n)(n-1)(n-2)(n-3)=0 | | 18=-6x^2+6x | | 7x/5-3=11 | | 7x7-6x=10 | | 4(x–2)=3x+6 | | 8x-8(x+3)=3(x+5)+18 | | 13-7x+6+x=-5x-5+2x | | X+5/10=1/5+x-5/8 | | 2,6-0,2b=1,1-0,5b | | 15x^2-11x-22=0 | | 9*(x-4)-5x=x-12 | | 7a-10=2-40 | | x=3.14*128 | | (x-9)^2/5=9 | | 3x-17=6x+4 | | 8x+66=46 | | 5/6+x=-5/9 | | 4x+2-5x=1-2x+9 | | 15x^2-7x-2=4x-20 | | 5a+45=-5 | | -96=-84+12s | | 3x^2=x-10 | | 3(3-8)=4(3x+6) | | -6x=5=17 | | X+x+1=35+x+2 |